找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 2078|回复: 6
打印 上一主题 下一主题
收起左侧

矩形整数边问题 from WXC

[复制链接]

53

主题

363

帖子

4139

积分

跳转到指定楼层
楼主
发表于 2005-3-5 01:39:17 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

一个矩形被划分为若干个小矩形, 每个小矩形的边平行于大矩形的边,并且每个小矩形都至少有一边长度为整数。证明大矩形至少有一边长度为整数。
 
Also there is a general version of the problem that is not yet solved at WXC:

Let G be a subgroup of the real numbers, such as integers, rational numbers, algebraic numbers. If a rectangle is filled with small rectangles, each has at least one side in G, then the large rectangle has at least one side in G.
www.ddhw.com

 
回复

使用道具 举报

5

主题

155

帖子

1115

积分

沙发
发表于 2005-3-5 03:01:20 | 只看该作者

Similar methods should work, right?


  Similar methods should work, right?




回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

板凳
 楼主| 发表于 2005-3-5 20:02:34 | 只看该作者

Some do and some don't


Some proofs work. The one posted at WXC does not.www.ddhw.com

 
回复 支持 反对

使用道具 举报

5

主题

155

帖子

1115

积分

地板
发表于 2005-3-6 02:45:01 | 只看该作者

Are there any web resources for these proofs?


I am not in the pure math field and not familiar with the Journal you mentioned in WXC (since it is so old, it should be quite hard to find). Thanks a lot.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

5#
 楼主| 发表于 2005-3-7 18:44:08 | 只看该作者

回复:Are there any web resources for these proofs?


This (American Mathematical Monthly ) is probably the most famous Elementery Math magazine in the world. You should be able to find it in the central library of any large city. Or if you are near a university, visit its Math Library (usually in or near the math department.) I did not find this article online, and do not know how many proofs you can find online.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

10

主题

271

帖子

1996

积分

6#
发表于 2005-3-10 00:41:46 | 只看该作者

回复:矩形整数边问题 from WXC


by induction.  we can shrink the rectangle in the following way.  consider the top left corner small rectangle.  if it's vertical side is integer length, we cut the large rectangle along the bottom of the small rectangle.  therefore, we reduce the vertical side of the large rectangle by an integer length.  if not, then the horizontal side is integer length, we cut the large rectangle along the right side of the small rectangle.  we reduce the horizontal side of the large rectangle by an integer length.  Note the condition still holds with the shrinked rectangle and the smaller rectangles (at least one of their sides are integer lengths).  Eventually, the larger rectangle will have either vertical / horizontal side equals 1.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

7#
 楼主| 发表于 2005-3-10 18:11:07 | 只看该作者

Problem and hint


The problem with your approach is that when your cut off the top strip, there might be small squares at top whose integer side is along the top edge, and whose noninteger side is above your cut line. So the whole rectangle is cut off, and the second rectangle from top then is cut off a noninteger portion.www.ddhw.com
 
Hint: Convert the problem to a 一笔画问题.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved