找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 2442|回复: 16
打印 上一主题 下一主题
收起左侧

ob好题重贴:美丽的项链

[复制链接]

53

主题

363

帖子

4139

积分

楼主
发表于 2005-2-14 20:21:55 | 显示全部楼层

回复:突然想到一种解法,不知对错。可能想得太简单化了。在此抛砖以引玉。


The necklace needs to form a circle, right?
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

沙发
发表于 2005-2-15 06:02:32 | 显示全部楼层

回复:This might need the so-called Polya theorem,


Straight line should be easy. (18!/(2*6!6!6!) + 9!/(2*3!3!3!).) It is the circular ones that cause problem.www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

板凳
发表于 2005-2-15 21:24:05 | 显示全部楼层

回复:This might need the so-called Polya theorem,


I tried with 6 stones (2 each) and got 11. It basicaaly excluded any simple formula. Looks like it requires a free weekend (which I do not have now) to study the Polya Enumeration Theorem.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

地板
发表于 2005-2-17 17:52:40 | 显示全部楼层

477368


= (18!/(6!6!6!) + 2*3! + 2*6!/(2!2!2!) + 19*9!/(3!3!3!))/36.www.ddhw.com
 
I will post the details when I find a little more time.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

5#
发表于 2005-2-18 18:59:14 | 显示全部楼层

Details


I have found some time to read the first couple of pages of the Pólya theory, not up to the real Pólya enumeration theorem (PET) yet, but learned just enough to solve this problem.www.ddhw.com

Let X be a finite set and G a permutation group on S. Define the orbits of S under G as the G-equivalence classes  (s is equivalent to s' if there is g in G such that g(s) = s'). For g in G, define the set Sg of the fixed points of g as {s in S : g(s) = s}.

Theorem. The number of orbits of S under G = (1/|G|) ∑(g in G) |Sg|.

This theorem is a simplified version of the PET, and also know as Burnside's lemma.

Now let's see how it applies to the necklace problem.www.ddhw.com

Here S is the set of all straight line arrangement of the 18 stones. (|S| = 18!/(6!6!6!).) G consists of 18 rotations and 18 reflections. Each orbit corresponds to one real necklace. For each reflection, a fixed point is a (somewhat) symetric element in S, and there are 9!/(3!3!3!) of them.
Now consider the rotations. Let's call them r0 to r17, for how much it rotates. Only r0, r3, r6, r9, r12, and r15 have fixed points. For r0 (no move), Sg = S. For the others, Sg is the set of periodic patterns with period 3, 6, 9, 6, and 3, respectively, and |Sg| = 3!, 6!/(2!2!2!), or 9!/(3!3!3!). Now we apply the theorem, and the total number of different necklaces is

(18!/(6!6!6!) + 2*3! + 2*6!/(2!2!2!) + 19*9!/(3!3!3!))/36 = 477386.

A straight application of the theorem works for the cube problem (or any regular polyhedron coloring problem) too. I would like to see some one try it. The key is to find all permutations. (If you don't, the division very often produces fractions.)

www.ddhw.com

 

回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

6#
发表于 2005-2-21 04:33:11 | 显示全部楼层

It is a group


rotation x rotation = rotation
rotation x reflection = reflection
reflection x reflection = rotation
rotation^-1 = rotation
reflection^-1 = reflectionwww.ddhw.com

Actually no proof is needed: If the orbits are well defined (as equivalence classes), the permutations must form a group.www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved