有图么?什么样的三角形?任意三角形么? 本贴由[色盲]最后编辑于:2007-5-10 16:37:49 |
Consider a trangle ABC, with edges of lengths a, b, c (where a is the length of the edge opposite to vertex A, and similarily for b vs B, c vs C). With a little abuse of notation, we also use A to represent the angle at vertex A. Now, consider a triangle ADE, with D on AB and E on AC, let's denote the length of AD and AE as x and y respectively . We want to minimize the length of DE subject to the constrain that the area of ADE is half of that of ABC, or: max x^2+y^2-2 *x *y *cos(A) subject to x*y = 1/2*b*c x Since x*y is constant, so that problem can be simplified: max x^2+y^2 subject to x*y = 1/2*b*c x Solution: (1) if 1/2 else (2) b>=2*c, y = c, x = 1/2*b (3) c>=2*b, x=b, y = 1/2*c Then, the length of DE = sqrt(b^2+c^2-2*b*c*cosA) Similarily, you may calculate the length of the dividing line for small triangles contain vertex C and B, and compare to get the final result. |
Good try,但有点太复杂了。具体怎么操作划分呢?假设你在地头,只有卷尺和计算器在手 本贴由[husonghu]最后编辑于:2007-5-10 12:33:29 |
To simplify: Find the two longest edges, say AB and AC, find D on AB and E on AC so that |AD| = |AE| = sqrt(1/2*|AB|*|AC|) Then DE is the line. |
记三角形ABC对应于顶点A、B、C的边长分别为a、b、c。不妨设a≥b≥c。 1)由A点作BC之垂线,记垂足为D,并量得AD和CD的长度,分别记为h和d; 2)计算C角α=tan-1(h/d); 3)作C角之平分线,在其上取点E使得CE长[ah/4tan(α/2)](1/2); 4)过E点作CE之垂线交三角形两边,即得最短分界线。 |
一段弧线会更短吧? |
好主意!请试试。yinyin是在直线的假设下进行优化的,可能过于局限。 |
不过,即使某一曲线为最短,仅用卷尺和计算器一般也画不出来。 若用圆弧,可以画,也确是可以更短一些,为直线段的[α/2tan(α/2)]1/2倍长。这样,(3)和(4)那两步就改为一步: 3)用卷尺,一端固定在C点,按半径(hd/2α)1/2画圆弧即可。
本贴由[yinyin]最后编辑于:2007-5-11 19:59:49 本贴由[yinyin]最后编辑于:2007-5-11 20:3:41 本贴由[yinyin]最后编辑于:2007-5-11 23:39:41 |
在曲线段与C角所围的面积固定(1/2的三角形面积)的条件下,这圆弧在任何曲线中是最短的。 |
设三角形ABC中, C角为最小角, a和b为两较长边, 只要从C角顶起在a和b上各量CD=CE=sqrt(ab/2), 连接DE即为所求最短直线, 因它是等腰三角形CDE的底边, 而且CDE面积=(1/2)(CD)(CE)(sinC)=(1/4)ab(sinC)=(1/2)ABC面积.
yinyin的做法要繁一点(作垂线,算角度, 取角平分线等等), 但可以验证结果是一样的. |
(hd/2α)1/2似乎应该是(ha/2α)1/2, 请查看一下, 对吗?
因为从(扇形面积=(1/2)三角形面积): αr2/2=(1/4)ab(sin α) 得: r=[ab(sin α)/2α]1/2 = (ha/2α)1/2 本贴由[husonghu]最后编辑于:2007-5-12 5:11:55 |
谢谢指正,yinyin是错把a打成d了。 |
作过三角形后,在三角形的三边分别作三条高,取高最短的那条底边,将这条底边的中点与其所对的顶点相连接,所作的线段就是分地的界。 |
欢迎光临 珍珠湾ART (http://art.zhenzhubay.com/) | Powered by Discuz! X3 |