珍珠湾ART

标题: (1982年 美 国 奥 赛 题 ) 证 明 存 在 一 个 正 整 数 k [打印本页]

作者: 野 菜 花    时间: 2005-2-18 21:03
标题: (1982年 美 国 奥 赛 题 ) 证 明 存 在 一 个 正 整 数 k

使 得 k*2^n+1 对 每 一 个 正 整 数 n, 均 为 合 数 。
www.ddhw.com

 

作者: fzy    时间: 2005-2-19 06:08
标题: 回复:(1982年 美 国 奥 赛 题 ) 证 明 存 在 一 个 正 整 数 k

I have an idea. But there seems to be too much calculation to do during a competition. It is like this:www.ddhw.com

When k mod 3 != 0, 1/2 of k*2^n + 1 is divisible by 3. When k mod 5 != 0, 1/4 of them is divisible by 5. For 7, when k mod 7 != 3, 5, or 6, 1/3 of them is divisible by 7. Together they can cover about 5/6 of n. As we go through the prime numbers we should be able to find a group of numbers to cover all n. But I went up to 41 and was not yet successful. Might need to write a program to do it.

Probably some results in number theory can give a non constructive proof.

www.ddhw.com

 

作者: 野 菜 花    时间: 2005-2-19 08:27
标题: 回复:回复:(1982年 美 国 奥 赛 题 ) 证 明 存 在 一 个 正 整 数 k

Use the Chinese Remain Theorem. It IS very difficult, I doubt whether any people could solve it during the exam time.
www.ddhw.com

 

作者: fzy    时间: 2005-2-19 16:31
标题: generated by my program

I ran my program for all prime numbers < 1000, and the only solutions I found are:

3 -> 1/2
5 -> 1/4
7 -> 1/3
13 -> 1/12
17 -> 1/8
241 ->1/24www.ddhw.com

and

3 -> 1/2
5 -> 1/4
7 -> 1/3
13 -> 1/12
17 -> 1/8
97 -> 1/48
257 -> 1/16

They both cover all n. Now we can use the Chinese remainder theorem to find the k with proper remainders. But that would take another program and I am in no mood to do that.

Are you telling me this is the only way to solve it? They must be crazy to give a problem like this! Even if you know what to do right away, the calculation would take several hours!
www.ddhw.com

 

作者: 野 菜 花    时间: 2005-2-20 03:40
标题: Great job![@};-][@};-]

I agree with you that they must be crazy to give such difficult problem as a test question, and I am very sorry I did not read the solution carefully before I posted the problem. (So I am crazy too , although I am not on purpose.)  I thought a test problem would not be too difficult for people like you. You have done a great job. I don't understand how  people could give the solution without a computer.  I think through your hard and creative work, you could  master these skills in number theory better, hopefully you would not regret  having spent time on this problem.
 
Let me post their solution here,
Claim1: For any n, at least one of the following is true:
a)n=1(mod2)
b)n=1(mod3)
c)n=2(mod4)
d)n=4(mod8)
e)n=0(mod12)
f)n=8(mod24)
 
Pf: If n is odd, a) is true;
if 2 divides n but 4 not, then c) is true;
if 4 divides n but 8 not, then d) is true;www.ddhw.com
consider n=8m,
if m=3k, then e) is true
if m=3k+1,then f) is true
if m=3k+2, then b) is true//
 
Notice:
2^2=1(mod3)
2^3=1(mod7)
2^4=1(mod5)
2^8=1(mod17)
2^12=1(mod13)
2^24=1(mod 241)
 
Therefore
case a) n=1(mod2) or n=2m+1, then k*2^n+1=k*2^(2m+1)+1=2k*2^2m+1=2k+1(mod3)
Similarly, we have
case b) K*2^n+1=2k+1(mod7)www.ddhw.com
case c) k*2^n+1=4k+1(mod5)
case d) k*2^n+1=16k+1(mod17)
case e) k*2^n+1=k+1(mod13)
case f) k*2^n+1=256k+1(mod241)
 
 
Thus, if k satisfies all the followings, then k*2^n+1 is divisible by at least one of 3,7,5,17,13,241, therefore k*2^n+1 is not prime.
2k+1=0(mod3)
2k+1=0(mod7)
4k+1=0(mod5)
16k+1=0(mod17)
k+1=0(mod13)
256k+1=0(mod241)
 www.ddhw.com
But those congruences are equivalent to the followings:
k=1(mod3)
k=3(mod7)
k=1(mod5)
k=1(mod17)
k=-1(mod13)
k=16(mod241)
 
Since all 3,7,5,17,13,241 are primes, according to the Chinese Remainder Theorem, there must be solutions. Actually, k=1207426+5592405m
 
 
 
 
 
 
www.ddhw.com

 

作者: fzy    时间: 2005-2-20 05:04
标题: 回复:Great job![@};-][@};-]

So if fully written out, the standard solution is shorter than mine. But I really do not see any one who is not a trained number theorist can come up with that solution in a reasonable amount of time.www.ddhw.com

Thanks for your concern. I am not upset. :) I no longer care about learning new skills in number theory or anywhere. Instead I do the problems as a way for brain excercise. :Dwww.ddhw.com

 

作者: 乱弹    时间: 2005-2-20 13:12
标题: 回复:Great job![@};-][@};-]

The Chinese remainder Theorem is the first thing coming into my mind. However, it is too hard to be done in 90 minutes...   The first claim is hard to find out.....Although I was thinking about some similar things..........www.ddhw.com
 
Well, I think this kind of problem should still be welcomed...
www.ddhw.com

 

作者: 野 菜 花    时间: 2005-2-20 20:20
标题: 回复:回复:Great job![@};-][@};-]

 Each USAMO has 5 question in various levels for 3.5 hours. I agree with both of you, I really doubt, any one could solve this problem during the exam time.
www.ddhw.com

 





欢迎光临 珍珠湾ART (http://art.zhenzhubay.com/) Powered by Discuz! X3